
Application Penetration
Assessment Report of

Client Portal WordPress Plugin

Findings, Attack Narrative, and
Recommendations

DATE: 03.01.24

Table of Contents

Executive Summary 2
1.1 Project Objectives 3
1.2 Scope & Timeframe 4

1.2.1 Hostnames & IP-addresses 4
1.2.2 User Accounts provided 4
1.3 Summary of Findings 4

1.4 Summary of Business Risks 5
1.5 High-Level Recommendations 6

Technical Details 7
2.1 Methodology 7
2.2 Security tools used 8
2.3 Project limitations 8

Findings Details 8
3.1 Medium severity findings 8

3.1.1 Reflected Cross-Site Scripting (XSS) via Locale Parameter in JavaScript
Code 8
3.1.2 Reflected Cross-Site Scripting (XSS) in Email Parameter of JavaScript
Cookie Handling 11

Executive Summary

This report presents the results of the White Box & Black Box penetration testing
for the new Client Portal - WordPress Plugin. The recommendations provided in
this report are structured to facilitate remediation of the identified security risks.
This document serves as a formal letter of attestation for the recent
authentication Service penetration testing. Evaluation ratings compare
information gathered during the engagement to “best in class” criteria for
security standards. We believe that the statements made in this document
provide an accurate assessment of the current security of the Authentication.

We highly recommend reviewing the Summary section of business risks and
High-Level Recommendations to better understand risks and discovered security
issues

The intent of an application assessment is to dynamically identify and assess the
impact of potential security vulnerabilities within the application. During this
assessment, manual testing tools and techniques were employed to discover and
exploit possible vulnerabilities.

All testing activities were conducted against the stage environment to limit the
impact of any service disruptions.

Testing was conducted from both an unauthenticated and authenticated context.
Unauthenticated testing examines the exterior security posture of an application
and looks for vulnerabilities that do not require authentication to exploit, while
authenticated tests focus on discovering and exploiting vulnerabilities on portions
of the internal application that are only accessible after successful authentication.
Assessors were provided both a regular user and an administrative user account
to assess the internal security controls of the application.

1.1 Project Objectives

Our primary goal within this project was to provide the TE with an understanding
of the current level of security in the web application authentication. We
completed the following objectives to accomplish this goal:

● Identifying authentication-based threats and vulnerabilities in the application

● Comparing current security measures with industry best practices.

● Providing recommendations that can be implemented to mitigate threats and
vulnerabilities and meet industry best practices

The Common Vulnerability Scoring System (CVSS) version 3.0 was used to
calculate the scores of the vulnerabilities found.

1.2 Scope & Timeframe

We conducted the tests using a staging (non-production) environment with
installed Client Portal WordPress Plugin. All other applications and servers were
out of scope. The following hosts were considered to be in scope for testing.

The main approach was to test authentication and authorization.

1.2.1 Hostnames & IP-addresses

Stage environment with plugin installed:
- {REDACTED}

1.2.2 User Accounts provided

User provided for application itself
● {REDACTED}

User provided for WP admin panel
● {REDACTED}

1.3 Summary of Findings

Our assessment of the Client Portal WP Plugin revealed the following
vulnerabilities

Security experts performed manual security testing according to the OWASP
Web Application Testing Methodology, which demonstrates the following results.

Severity Critical High Medium Low
Information
al

Number of
issues 0 0 2 0 0

Severity scoring:
● Critical – Immediate threat to key business processes.
● High – Direct threat to key business processes.
● Medium – Indirect threat to key business processes or partial threat to business
processes.
● Low – No direct threat exists. The vulnerability may be exploited using other
vulnerabilities.
● Informational – This finding does not indicate vulnerability, but states a
comment that notifies about design flaws and improper implementation that
might cause a problem in the long run.

The exploitation of found vulnerabilities may cause full compromise of some
services, stealing users’ accounts, and gaining organization’s and users’ sensitive
information.

1.4 Summary of Business Risks

In the case ofWP Plugin and related infrastructure

Critical severity issues can lead to:

● Disruption and unavailability of main services, which company provide to
their users

● Prolonged recovery from backups phase as a result of a focused attack
against internal infrastructure

● Company-wide ransomware attack with the following unavailability of
certain parts of the infrastructure and possible financial loss due to
insufficient security insurance

High severity issues can lead to:

● Usage of CRM infrastructure for illegitimate activity (scanning of the
internal network, Denial of Service attacks)

● Disclosure of confidential and Personally Identifiable Information

● Theft or exploitation of the credentials of a higher-level account

Medium severity issues can lead to:

● Disclosure of system components versions, logs and additional
information about systems that might allow disgruntled employees or
external malicious actors to misuse or download sensitive information
outside of the company perimeter.

● Disclosure of confidential, sensitive and proprietary information related to
users and companies which use CRM services

Low and Informational severity issues can lead to:

● Abusing business logic of main services to gain competitive advantage

● Unauthorised access to user or company confidential, private, or sensitive
data

● Repudiation attacks against other users of services which allow
maintaining plausible deniability

1.5 High-Level Recommendations

Taking into consideration all issues that have been discovered, we highly
recommend to:

● You should validate all user input for data that users can add/edit on the
server-side.

● Requests that modify data should be validated through the CSRF token to
avoid

● possible Cross-Site Request Forgery attacks.
● Encode data on output
● Content Security Policy

Technical Details

2.1 Methodology

Our Penetration Testing Methodology is grounded on the following guides and
standards:

● OWASP Top 10 API Security Risks
● OWASPWeb Security Testing Guide
● OWASP Application Security Verification Standard

Open Web Application Security Project (OWASP) is an industry initiative for
web application security. OWASP has identified the 10 most common attacks that
succeed against APIs. Besides, OWASP has created Application Security
Verification Standard (ASVS) which helps to identify threats, provides a basis for
testing web application technical security controls, and can be used to establish a
level of confidence in the security of Web applications.

The OWASP Web Security Testing Guide (WSTG) is a comprehensive guide to
testing the security of web applications and web services. Created by the
collaborative efforts of security professionals and dedicated volunteers, the WSTG
provides a framework of best practices used by penetration testers and
organisations all over the world.

https://github.com/OWASP/wstg
https://github.com/OWASP/ASVS

The primary aim of the OWASP Application Security Verification Standard
(ASVS) Project is to provide an open application security standard for web apps
and web services of all types. The standard provides a basis for designing,
building, and testing technical application security controls, including
architectural concerns, secure development lifecycle, threat modelling, agile
security including continuous integration / deployment, serverless, and
configuration concerns.

2.2 Security tools used

● Manual testing: Burp Suite Pro
● Vulnerability Scan:
● Directory enumeration:
● Injection testing tools: XSSHunter, SQLmap
● Secure Code Review: IntelIiJ IDEA CE

2.3 Project limitations

The Assessment was conducted against a testing environment with all limitations
it provides.

Findings Details

3.1Medium severity findings

3.1.1 Reflected Cross-Site Scripting (XSS) via Locale
Parameter in JavaScript Code

Vulnerability ID: 1
Threat level: Medium

CWE CWE-79

https://cwe.mitre.org/data/definitions/79.html

CVSS 3 5.4 (AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N)

Description The vulnerability arises from the application's failure to properly
sanitize the 'locale' parameter that is dynamically inserted into
the webpage. This allows an attacker to inject malicious scripts
into the page, which are then executed in the context of the
victim's browser.

Security Impact An attacker can exploit this vulnerability to perform actions on
behalf of users, access sensitive information, redirect users to
malicious websites, or perform other malicious activities.

Vulnerable Code /view/templates/AuthorizationStep.php

Remediation - Input Validation: Ensure that all input parameters,
especially those used in the DOM, are properly validated
against a strict specification.

- Output Encoding: Apply context-appropriate output
encoding when data is inserted into the DOM.

- Use Frameworks that Automatically Escape XSS:
Frameworks like React or Angular have built-in XSS
protection.

- Content Security Policy (CSP): Implement a robust CSP
to mitigate the impact of XSS vulnerabilities.

External References https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scri
pting_Prevention_Cheat_Sheet.html

Finding Evidence

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N&version=3.1
https://bitbucket.org/crmdata/wp_plugin/src/c51f314bc728540945286f94482f248b1195bba8/view/?at=master
https://bitbucket.org/crmdata/wp_plugin/src/c51f314bc728540945286f94482f248b1195bba8/view/templates/?at=master
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

The key part of the code that introduces the vulnerability is:

const locale = new URLSearchParams(search[1]).get('locale');

This line extracts the 'locale' parameter directly from the URL without any
sanitization or validation.

Later in the code, this 'locale' parameter is directly used in the DOM:
javascript

document.cookie = '<?= COOKIE_LANG; ?>=' + locale + '; Max-Age=' + 24 * 60 * 60 + '; path=/; SameSite=None;

Secure';

window.location = redirectUrl.replace('__TOKEN__', token).replace('__LANG__', locale ? locale : 'en');

Here, the 'locale' parameter is directly used in a cookie and in constructing the
'window.location', without encoding or escaping the input. This practice is
susceptible to XSS as it allows for the injection of malicious scripts.

The goal is to close the existing context and start a script context. However, due to
the nature of the code, the payload needs to be crafted carefully, especially
considering it's being used in both a cookie and a URL context.

A sample payload might look like this:

en'; alert('XSS'); //

Injected with XSS Payload:

// Assuming the payload is: en'; alert('XSS'); //

document.cookie = '<?= COOKIE_LANG; ?>=' + 'en\'; alert(\'XSS\'); //' + '; Max-Age=' + 24 * 60 * 60 + '; path=/;

SameSite=None; Secure';

window.location = redirectUrl.replace('__TOKEN__', token).replace('__LANG__', 'en\'; alert(\'XSS\'); //' ? 'en\';

alert(\'XSS\'); //' : 'en');

How the Browser Interprets This:

1. document.cookie line:
○ The browser will set the cookie named <?= COOKIE_LANG; ?> to

en';.
○ It will then execute alert('XSS');, which will show an alert box

with 'XSS' as its content.
○ The rest of the line (//; Max-Age=86400; path=/;

SameSite=None; Secure) is treated as a comment and thus
ignored.

2. window.location line:
○ The replace function is called on redirectUrl, replacing

__TOKEN__ with the value in token.
○ Next, it attempts to replace __LANG__ with the XSS payload (en';

alert('XSS'); //).
○ The browser will evaluate the locale ternary operation, but since the

injected script (en'; alert('XSS'); //) ends the string and
comments out the rest of the line, the expected behavior of the
replace function is disrupted, and the script alert('XSS') is
executed.

Remediation

1. Input Validation:
○ Implement strict validation on the locale parameter. Ensure it only

accepts values that match expected locale formats (like 'en', 'fr', etc.).
This can often be done using a regular expression that matches
known safe patterns.

○ Reject any input that does not conform to these expected formats.
2. Output Encoding:

○ For JavaScript, you can use functions to escape user input before
inserting it into the script context.

3. Use Context-Specific Escaping:
○ Since the locale parameter is used in different contexts (HTML,

JavaScript, URL, etc.), apply context-specific escaping. For instance,
use JavaScript escaping when the data is used in a JavaScript
context.

4. Content Security Policy (CSP):
○ Implement a Content Security Policy as an additional layer of

protection. This can help mitigate the impact of XSS vulnerabilities
by restricting where resources can be loaded from and what actions
scripts can perform.

○ For instance, CSP can be configured to disallow the execution of
inline scripts, which would prevent most XSS attacks.

3.1.2 Reflected Cross-Site Scripting (XSS) in Email
Parameter of JavaScript Cookie Handling

Vulnerability ID: 2
Threat level: Medium

CWE CWE-79

CVSS 3 5.4 (AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N)

Description ● The vulnerability is due to the lack of proper sanitization
or encoding of the email parameter. This parameter is
directly incorporated into a cookie in a JavaScript
context, without any sanitization or encoding, leading to
a reflected XSS vulnerability.

● An attacker can exploit this by crafting a malicious
email parameter that injects JavaScript code into the
webpage.

Security Impact An attacker can exploit this vulnerability to perform actions on
behalf of users, access sensitive information, redirect users to
malicious websites, or perform other malicious activities.

Vulnerable Code /core/includes/HiddenField.php

Remediation - Input Validation: Ensure that all input parameters,
especially those used in the DOM, are properly validated
against a strict specification.

- Output Encoding: Apply context-appropriate output
encoding when data is inserted into the DOM.

- Use Frameworks that Automatically Escape XSS:
Frameworks like React or Angular have built-in XSS
protection.

- Content Security Policy (CSP): Implement a robust CSP
to mitigate the impact of XSS vulnerabilities.

External References https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scri
pting_Prevention_Cheat_Sheet.html

Vulnerable component

renderHiddenUUIDFormField function

Finding Evidence
In the provided code snippet:

https://cwe.mitre.org/data/definitions/79.html
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N&version=3.1
https://bitbucket.org/crmdata/wp_plugin/src/c51f314bc728540945286f94482f248b1195bba8/core/?at=master
https://bitbucket.org/crmdata/wp_plugin/src/c51f314bc728540945286f94482f248b1195bba8/core/includes/?at=master
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

"; alert('XSS'); var ignore="= '" . COOKIE_EMAIL . "=" . $emailClear . " ; Max-Age=' + 15*60 + '; path=/;

SameSite=None; Secure';

The emailClear variable is directly concatenated into the script. To exploit this,
the payload must effectively break out of the current script context. A potentially
effective payload could be:

"; alert('XSS'); var ignore="

Breaking this payload down:

1. "; - This part ends the string that emailClear is being concatenated into.

2. alert('XSS'); - This is the JavaScript code intended for execution. An
alert is often used in PoCs due to its immediate visual feedback.

3. var ignore=" - This portion of the payload is intended to neutralize the
rest of the original line of code to avoid JavaScript errors that could prevent
the payload from executing.

