

WEB Application Penetration Testing
Report for

{REDACTED CLIENT}

Findings, Attack Narrative, and
Recommendations

31/03/2024

Table of Contents
Executive Summary
Introduction

1.1 Project Objectives

1.2 Scope & Timeframe

1.2.1 Hostnames & IP-addresses

1.3 Summary of Findings

1.4 Summary of Business Risks

1.5 High-Level Recommendations

Technical Details
2.1 Methodology

2.2 Security tools used

2.3 Project limitations

Findings Details
3.1 High severity findings

3.1.1 Insecure CORS configuration on auth-v2.cashir.live

3.1.2 Server Side Request Forgery (SSRF) on portal.cashir.live

3.3 Medium severity findings

3.3.1 Reflected HTML injection via invalid requests

3.4 Low severity findings

3.4.1 Vulnerable JavaScript library

Confidential
Web Application Penetration Testing

1

Executive Summary

This report presents the results of the White Box & Black Box penetration testing for the {REDACTED
CLIENT}. The recommendations provided in this report are structured to facilitate remediation
of the identified security risks. This document serves as a formal letter of attestation for the
recent Aгthentication Service penetration testing. Evaluation ratings compare information
gathered during the engagement to “best in class” criteria for security standards. We believe
that the statements made in this document provide an accurate assessment of the current
security of the Authentication.

We highly recommend reviewing the Summary section of business risks and High-Level
Recommendations to better understand risks and discovered security issues

The intent of an application assessment is to dynamically identify and assess the impact of potential
security vulnerabilities within the application. During this assessment, manual testing tools and
techniques were employed to discover and exploit possible vulnerabilities.

Testing was conducted from both an unauthenticated and authenticated context. Unauthenticated
testing examines the exterior security posture of an application and looks for vulnerabilities that do
not require authentication to exploit, while authenticated tests focus on discovering and exploiting
vulnerabilities on portions of the internal application that are only accessible after successful
authentication. Assessors were provided both a regular user and an administrative user account to
assess the internal security controls of the application.

Confidential
Web Application Penetration Testing

2

Introduction

1.1 Project Objectives

Our primary goal within this project was to provide {REDACTED CLIENT} with an understanding of the
current level of security in the web application authentication. We completed the following objectives
to accomplish this goal:

● Identifying authentication-based threats and vulnerabilities in the application

● Comparing current security measures with industry best practices.

● Providing recommendations that can be implemented to mitigate threats and
vulnerabilities and meet industry best practices

The Common Vulnerability Scoring System (CVSS) version 3.0 was used to calculate the
scores of the vulnerabilities found.

1.2 Scope & Timeframe

We conducted the tests using a staging (non-production) environment of {REDACTED CLIENT}. All
other applications and servers were out of scope. The following hosts were considered to be in scope
for testing.

1.2.1 Hostnames & IP-addresses

Scope: Description:

https://{REDACTED HOST} Merchant portal

https://{REDACTED HOST} API & Payment Page

Confidential
Web Application Penetration Testing

3

1.3 Summary of Findings

Our assessment of the {REDACTED CLIENT} web application revealed the following vulnerabilities

Security experts performed manual security testing according to the OWASP Web Application Testing

Methodology, which demonstrates the following results.

Severity Critical High Medium Low Informational

Number of
issues 0 0 3 1 0

Severity scoring:
● Critical – Immediate threat to key business processes.

Confidential
Web Application Penetration Testing

4

● High – Direct threat to key business processes.
● Medium – Indirect threat to key business processes or partial threat to business processes.

● Low – No direct threat exists. The vulnerability may be exploited using other vulnerabilities.
● Informational – This finding does not indicate vulnerability, but states a comment that notifies
about design flaws and improper implementation that might cause a problem in the long run.

The exploitation of found vulnerabilities may cause full compromise of some services, stealing users’
accounts, and gaining organisation’s and users’ sensitive information.

1.4 Summary of Business Risks

In the case of {REDACTED CLIENT} applications and related infrastructure

Critical severity issues can lead to:

● Disruption and unavailability of main services, which company provide to their
users

● Prolonged recovery from backups phase as a result of a focused attack against
internal infrastructure

● Company-wide ransomware attack with the following unavailability of certain parts
of the infrastructure and possible financial loss due to insufficient security insurance

High severity issues can lead to:

● Usage of infrastructure for illegitimate activity (scanning of the internal network,
Denial of Service attacks)

● Disclosure of confidential and Personally Identifiable Information

● Theft or exploitation of the credentials of a higher-level account

Medium severity issues can lead to:

Confidential
Web Application Penetration Testing

5

● Disclosure of system components versions, logs and additional information about
systems that might allow disgruntled employees or external malicious actors to
misuse or download sensitive information outside of the company perimeter.

● Disclosure of confidential, sensitive and proprietary information related to users
and companies which use CRM services

Low and Informational severity issues can lead to:

● Abusing business logic of main services to gain competitive advantage

● Unauthorised access to user or company confidential, private, or sensitive data

● Repudiation attacks against other users of services which allow maintaining
plausible deniability

1.5 High-Level Recommendations

Taking into consideration all issues that have been discovered, we highly recommend to:
● Allow only trusted domains for CORS policy.
● Ensure that you have input validation and a strict whitelisting of allowed URLs to prevent

SSRF vulnerabilities.
● Implement rigorous input validation and output encoding to sanitize user inputs and prevent

XSS/HTML-injection vulnerabilities.

Technical Details

2.1 Methodology

Our Penetration Testing Methodology is grounded on the following guides and standards:

● OWASP Web Security Testing Guide

Open Web Application Security Project (OWASP) is an industry initiative for web application security.
OWASP has identified the 10 most common attacks that succeed against APIs. Besides, OWASP has

Confidential
Web Application Penetration Testing

6

created Application Security Verification Standard (ASVS) which helps to identify threats, provides a
basis for testing web application technical security controls, and can be used to establish a level of
confidence in the security of Web applications.

The OWASP Web Security Testing Guide (WSTG) is a comprehensive guide to testing the security of
web applications and web services. Created by the collaborative efforts of security professionals and
dedicated volunteers, the WSTG provides a framework of best practices used by penetration testers
and organisations all over the world.

2.2 Security tools used

● Manual testing: Burp Suite Pro
● Vulnerability Scan: nikto
● Network Scan: nmap
● Directory enumeration: gobuster
● Injection testing tools: XSSHunter, SQLmap
● Secure Code Review: IntelIiJ IDEA CE

2.3 Project limitations

The Assessment was conducted against a testing environment with all limitations it provides.

Confidential
Web Application Penetration Testing

7

Findings Details

3.1 Medium severity findings

3.1.1 Insecure CORS configuration on {REDACTED HOST}

Vulnerability ID: 1
Vulnerability Category: Client Side Security Misconfiguration
Threat level: High

CWE CWE-942

CVSS 3 8.1

Description The product uses a cross-domain policy file that includes domains that should
not be trusted.

Security Impact A CORS misconfiguration can leave the application at a high risk of
compromises resulting in an impact on the confidentiality and integrity of data
by allowing third-party sites to carry out privileged requests through your
website’s authenticated users such as retrieving user setting information or
saved payment card data.

Affected endpoint /

Remediation - Ensure that only “{REDACTED HOST}” is allowed.

External References https://securityintelligence.com/posts/cors-how-to-use-and-secure-a-cors-
policy-with-origin/

Finding Evidence
Auth service has a weak configuration of CORS. It is supposed to allow access for the frontend
domain of merchant portal “{REDACTED HOST}”, but due to insecure regexp the domain “{REDACTED
HOST}” may have access to the site too. It's a critical vulnerability on the client side which may allow
to hack a user account if he visits a malicious domain.

Confidential
Web Application Penetration Testing

8

Ensure that only “{REDACTED HOST}” is allowed.

 3.1.2 Server Side Request Forgery (SSRF) on {REDACTED HOST}

Vulnerability ID: 2
Vulnerability Category: Server Side Input Validation
Threat level: High

CWE CWE-918

CVSS 3 7.4

Description The merchant has the ability to set a webhook (URL) to be aware of
transaction status. The problem is that the webhook URL can be a link to the
internal host. The web server receives a URL and retrieves the contents of this
URL, but it does not sufficiently ensure that the request is being sent to the
expected destination.

Security Impact This can lead to accessing sensitive data like cloud server metadata, database
interfaces, or internal REST endpoints. Attackers exploit this vulnerability to
bypass input validation and potentially extract confidential information or
execute unauthorized actions within the system.

Affected endpoint /

Remediation - Ensure that webhook requests are sent from the host that doesn’t
have access to the hosts with sensitive information.

External References https://cheatsheetseries.owasp.org/cheatsheets/
Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

Confidential
Web Application Penetration Testing

9

Finding Evidence

http://{REDACTED HOST} → resolves to 127.0.0.1

This way an attacker can make http requests to any internal host and be able to see responses.
The service that makes requests should be out of the private network. Another option is to use a
proxy that doesn't have access to a private network.

3.1.3 Reflected HTML injection via invalid requests

Vulnerability ID: 3
Vulnerability Category: Injection
Threat level: Medium

CWE CWE-80

CVSS 3 5.8

Description Web page parses HTML tags in error message which could lead to XSS

Security Impact HTML injection could potentially lead to XSS which could affect client’s data

Affected endpoint /{REDACTED ENDPOINT}*

Remediation - Ensure that error pages response with “application/json” Content-
Type or at least they validate special characters used in HTML tags

External References https://www.wallarm.com/what/html-injection

Confidential
Web Application Penetration Testing

10

Finding Evidence

Confidential
Web Application Penetration Testing

11

As we can see, html tags passed in parameter saveTemplate are parsed and then displayed on a
response page

3.2 Low severity findings

3.2.1 Vulnerable JavaScript library

Vulnerability ID: 4
Vulnerability Category: Deprecated Component
Threat level: Low

CWE CWE-1104

CVSS 3 3.1

Description Web page uses deprecated and vulnerable JavaScript library

Security Impact Usage of deprecated libraries could lead to other vulnerabilities

Affected endpoint /{REDACTED ENDPOINT}*

Remediation - Ensure that library is updated and none outdated components are
used

External References https://security.snyk.io/package/npm/jquery/3.4.1

Confidential
Web Application Penetration Testing

12

 We detected jquery version 3.4.1.min, which has the following vulnerabilities:

● CVE-2020-11022 : Regex in its jQuery.htmlPrefilter sometimes may introduce XSS

● CVE-2020-11023 , CVE-2020-23064: passing HTML containing <option> elements from
untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods
(i.e. .html(), .append(), and others) may execute untrusted code.

Finding Evidence

Confidential
Web Application Penetration Testing

13

Confidential
Web Application Penetration Testing

14

	Executive Summary
	Introduction
	1.1 Project Objectives
	1.2 Scope & Timeframe
	1.2.1 Hostnames & IP-addresses
	

	1.3 Summary of Findings
	1.4 Summary of Business Risks
	1.5 High-Level Recommendations

	Technical Details
	2.1 Methodology
	2.2 Security tools used
	2.3 Project limitations

	Findings Details
	3.1 Medium severity findings
	3.1.1 Insecure CORS configuration on {REDACTED HOST}
	Finding Evidence

	3.1.2 Server Side Request Forgery (SSRF) on {REDACTED HOST}
	Finding Evidence

	3.1.3 Reflected HTML injection via invalid requests
	Finding Evidence

	3.2 Low severity findings
	3.2.1 Vulnerable JavaScript library
	Finding Evidence

