
CyberHAT Security Team

E�ernal penetration test report for Target
Company project

Contents

Contents...2
Executive summary.. 3
Testing details... 3

Reconnaissance...3
Discovery, Perimeter, Stateful Firewall and DNS Analysis.. 3

Result summary... 4
Vulnerability Scanning... 5

Scanners used...5
Summary of Scanning results..5

Penetration testing.. 6
Objectives.. 6
Network and Host Test Coverage: Common Network and Host Configuration Issues............ 6
Network and Host Test Coverage: Encryption... 6
Application Test Coverage: Information Disclosure... 7
Application Test Coverage: Authentication.. 7
Application Test Coverage: Authorization.. 8
Application Test Coverage: Data Validation - Reflection Issues.. 8
Application Test Coverage: Data Validation – Injection and Miscellaneous.............................8
Application Test Coverage: Session Handling... 9
Application Test Coverage: Application Server Configuration Issues.................................... 10
Wireless Network Test Coverage...10
Social Engineering Test Coverage...10

Findings Details...10
Summary.. 31

2

Executive summary

The first objective of this penetration test was to fully examine Target Company systems

and services to identify vulnerabilities that could allow an attacker to compromise the

confidentiality, integrity or availability of those systems and services.

Our second objective was to prove exploitability of vulnerabilities

Third objective was to give recommendations to remediate detected issues.

Note: Due to priority of objectives not all of the issues were tested in full range of their

potential impact. Full exploitation was not pursued if the vulnerability appeared to be

systemic or if remediation was mandatory for PCI compliance, or if exploitation would have

jeopardized either full test coverage or the stability of the systems under test.

Testing details

Reconnaissance

Reconnaissance step was conducted encompassing both active and passive techniques

using Whois queries, Search engines, amass, DNSDumpster, gobuster and other web

services and tools.

Also main hosts were retrieved by examining knowledge base on Confluence, because

services are placed behind VPN and being sure that we have maximum scope of targets

was very important.

After recon step we got a scope of targets and additional endpoints (such as S3buckets)

which will be listed in next section

Discovery, Perimeter, Stateful Firewall and DNS Analysis

3

At a minimum, an analysis was conducted from an external host to the target network with

use of VPN profile allowing access inside of the target network. In this section we give a

short summary of results, full results will be included in next sections.

Next targets were in scope in two isolated environments:

UAT env PROD env

 {{1 - - - - - - - - -}} {{8 - - - - - - - - -}}

 {{2 - - - - - - - - -}} {{9 - - - - - - - - -}}

 {{19 - - - - -}} {{10 - - - -}}

 {{4 - - - - -}} {{11 - - -}}

 {{5 - - - - - -}} {{12 - - - - -}}

 {{6 - - - - -}} {{13 - - -}}

 {{7 - - - - - - - - - -}} {{14 - - - - - - - - -}}

 {{15 - - - - -}}

 {{16 -}}

During pentest we were mainly concerned on UAT stage, because only there we were able

to perform authorized analysis, so PROD stage was mainly under host analysis

Result summary

Based upon stateful firewall inspection tests, DNS queries, port scans and services

identified (also tested for common misconfigurations or vulnerabilities), the network

devices are well secured.

Vulnerability Scanning

4

Scanners used

Tool Version Wordlist/modules/comments

ZAP 2.12.0 Active and passive scans

Nikto 2.1.6

Nmap 7.94 default, vuln, intrusive, brute,
discovery and auth scripts

nuclei 2.9.6

Burp Professional 2023.4.5 Intruder, Repeater, Scanner,
Autorize, Additional Checks for
Scanner, wfuzz wordlists

Gobuster 3.5.0 dirb big wordlist, subdomains
wordlist (github
danTaler/Wordlists)

sqlmap 1.6 risk 3 and level 5

dotdotpwn 3.0.2

xsser 1.8.4

Summary of Scanning results

Lot of low-severity findings such as missing Security Headers were detected, but also our

team detected a lot more severe vulnerabilities such as SQL injections and authorization

token reuse. More about detected issues will be described in next sections

Penetration testing

5

Objectives

The first objective was maximum test coverage; the second objective was safeguarding the

stability of the systems under test, and the last objective was proof of exploitability. The

priority of these objectives dictated that vulnerabilities were not necessarily pursued to the

point of full exploitation and compromise. Full exploitation was not pursued if the

vulnerability appeared to be systemic, or if remediation was mandatory by reason of

compliance drivers, or if exploitation would have jeopardized either full test coverage or the

stability of the systems under test.

Most of the tests we did on UAT stage in order to cover all functionality of prod-like

environment and not interacting with real users data, but imitate it.

Network and Host Test Coverage: Common Network and
Host Configuration Issues

Deprecated or vulnerable services ArgoCD 2.5.5 (latest release - 2.8.0)
strapi v4.0.5 (latest - 4.11.2)
node 14.16.0

Open Administrative interfaces No faults found.

Services open outside the VPN No faults found.

Authentication Attacks No faults found.

Network and Host Test Coverage: Encryption

Transport Protocol One expired protocol detected

Transport Cipher Suites Support No faults detected.

Clear Text Transport of Sensitive Data Potentially possible, but with very small
chance (Strict Transport Security Headers
not set in some places)

6

Application Test Coverage: Information Disclosure

Robots.txt No faults detected.

Comments No faults detected.

Hidden Files No faults detected.

Error Handling Database shows SQLSTATE error, which
discloses SQL injection possibility

Application Test Coverage: Authentication

User Account Enumeration No faults found.

Guessable Accounts UAT stage is full of guessable credentials,
but it’s not a PROD environment, so it’s not
critical for business. But {{17 - - - -}} in
PROD environment has easy guessable
credentials and it could be a great problem
because of deprecated version of strapi
and node working on that service.

Brute Force and Account Lockout UAT passwords could be bruted easily and
{{17 - - - -}} password on PROD stage could
be bruted as well

Authentication Bypass No faults found.

Password Recovery and Reset No faults found.

Password Complexity No faults found.

Secure Logout No faults found.

Browser Caching No faults found.

CAPTCHA Devices No faults found.

MFA No faults found.

Race Conditions No faults found.

7

Application Test Coverage: Authorization

Path Traversal No faults found.

Authorization Bypass No faults found.

Privilege Escalation No faults found.

RBAC Severe RBAC issues detected. Some user
roles are able to get information about
other clients that is out of their permission
scope.

Application Test Coverage: Data Validation - Reflection
Issues

Reflected XSS No faults found.

Persistent XSS No faults found.

DOM Based XSS No faults found.

XSS Flashing No faults found.

Input Reflected in output Issue detected. Low severity, no impact on
the system

Application Test Coverage: Data Validation – Injection and
Miscellaneous

SQL Injection At least two endpoints are vulnerable to
SQL Injections. It’s a critical vulnerability.

LDAP Injection No faults found.

ORM Injection No faults found.

8

XML Injection No faults found.

SSI Injection No faults found.

XPath Injection No faults found.

IMAP/SMTP Injection No faults found.

Code Injection No faults found.

OS Commanding No faults found.

Buffer overflow Potentially vulnerable if attacker could
control e-mail address in X.509 certificate.
It’s almost impossible in our case, but
potentially it’s a high risk vulnerabilitiy
(deprecated Nodejs on {{17 - - - -}})

File upload vulnerabilities No faults found.

HTTP Splitting/Smuggling No faults found.

DoS Potentially vulnerable if attacker could
control e-mail address in X.509 certificate.
It’s almost impossible in our case, but
potentially it’s a high risk vulnerabilitiy
(deprecated Nodejs on {{17 - - - -}})

Application Test Coverage: Session Handling

Session Predictability No faults found.

Encrypted transport Minor findings

Cookie Attributes Minor findings

Session Fixation High risk vulnerability: refreshToken could
be used as access token and vice versa

Session Re-Use High risk vulnerability: refreshToken could
be used as access token and vice versa

Cache Control Minor findings (info)

CSRF Vulnerabilities No faults found.

9

Application Test Coverage: Application Server
Configuration Issues

File Extensions Handling No faults found.

Old, Backup and Unreferenced Files No faults found.

HTTP Methods and XST No faults found.

Wireless Network Test Coverage

Out of scope.

Social Engineering Test Coverage

Out of scope.

Findings Details

Finding: SQL injection

Severity: Critical

Target(s): {{20 -}}

Description: SQL injection, also known as SQLI, is a common attack vector that uses

malicious SQL code for backend database manipulation to access information that was not

intended to be displayed. This information may include any number of items, including

sensitive company data, user lists or private customer details.

10

11

12

Note: More endpoints could be vulnerable to SQL injection, but it would be more effective

to analyze code and find a problem there, not pentesting every single endpoint

Finding: RBAC issues

Severity: Critical

Target(s): {{21 -}}

Description:

1. Any user is able to get ALL transactions, that system keeps

2. HQ Admin user is able to get information about ANY user (out of his Headquarter)

3. HQ Admin is able to change currency settings of ANY user (out of his Headquarter)

4. HQ Admin is able to unassign ANY brand from ANY user

This example shows that any user can get all transactions and info about them no matter

what role he has or what brands/headquarters are assigned to him. Also payload of user’s

query isn’t checked (we used “test”: “test” to prove it)

13

14

HQ Admin getting information about user:

15

HQ Admin changes currency settings:

16

HQ Admin can unassign any brand from any user:

Finding: very weak credentials

Severity: Critical

17

Target: {{14 - - - - - - - - -}}

Description: PROD admin panel of strapi service has same credentials as dev and uat

environments and they are easy guessable

 {{22 - - - - - - - - - - - - - - -}}

Finding: refresh and access tokens misconfiguration

Severity: High

Target: {{1 - - - - - - - - -}} , {{23 - - - - - - - - -}}

Descrpition: access token is a token that must be short living and refresh token is a long

living token used to “renew” access token. But in our case refresh token and access token

are doing same things, so refresh token could be used as access token and vice versa. If

attacker captures only access token his session will be aborted in short period, but with

refresh token he has permanent access to the services.

18

19

Finding: Missing/misconfigured/deprecated security headers

Severity: medium/low/info

Description: Security Headers are additional layer of security which makes information

safer and harder to get it (e.g. with MITM attacks). That’s not critical vulnerabilities, but they

are important in scope of secure design of application.

Target: core.crpt2.best

1. Strict Transport Security Misconfiguration

Severity: Medium

The HTTP Strict Transport Security policy defines a timeframe where a browser must

connect to the web server via HTTPS. Without a Strict Transport Security policy the web

application may be vulnerable against several attacks:

● If the web application mixes usage of HTTP and HTTPS, an attacker can manipulate

pages in the unsecured area of the application or change redirection targets in a

manner that the switch to the secured page is not performed or done in a manner,

that the attacker remains between client and server.

● If there is no HTTP server, an attacker in the same network could simulate a HTTP

server and motivate the user to click on a prepared URL by a social engineering

attack.

The protection is effective only for the given amount of time. Multiple occurrence of this

header could cause undefined behaviour in browsers and should be avoided.

2. Content sniffing not disabled

Severity: Low

There was no "X-Content-Type-Options" HTTP header with the value nosniff set in the

response. The lack of this header causes that certain browsers, try to determine the

content type and encoding of the response even when these properties are defined

correctly. This can make the web application vulnerable against Cross-Site Scripting (XSS)

20

attacks. E.g. the Internet Explorer and Safari treat responses with the content type

text/plain as HTML, if they contain HTML tags.

Set the following HTTP header at least in all responses which contain user input:

X-Content-Type-Options: nosniff

3. Cross-site scripting filter misconfiguration

Severity: Low

No X-XSS-Protection header was set in the response. This means that the browser uses

default behavior that detection of a cross-site scripting attack never prevents rendering.

The following header should be set:

X-XSS-Protection: 1; mode=block

Cross-site scripting (XSS) filters in browsers check if the URL contains possible harmful

XSS payloads and if they are reflected in the response page. If such a condition is

recognized, the injected code is changed in a way, that it is not executed anymore to

prevent a succesful XSS attack. The downside of these filters is, that the browser has no

possibility to distinguish between code fragments which were reflected by a vulnerable web

application in an XSS attack and these which are already present on the page. In the past,

these filters were used by attackers to deactivate JavaScript code on the attacked web

page. Sometimes the XSS filters itself are vulnerable in a way, that web applications which

were protected properly against XSS attacks became vulnerable under certain conditions.

It is considered as better practice to instruct the browser XSS filter to never render the

web page if an XSS attack is detected.

Target: {{1 - - - - - - - - -}}

1. Strict Transport Security Misconfiguration

21

Severity: Medium

The HTTP Strict Transport Security policy defines a timeframe where a browser must

connect to the web server via HTTPS. Without a Strict Transport Security policy the web

application may be vulnerable against several attacks:

● If the web application mixes usage of HTTP and HTTPS, an attacker can manipulate

pages in the unsecured area of the application or change redirection targets in a

manner that the switch to the secured page is not performed or done in a manner,

that the attacker remains between client and server.

● If there is no HTTP server, an attacker in the same network could simulate a HTTP

server and motivate the user to click on a prepared URL by a social engineering

attack.

The protection is effective only for the given amount of time. Multiple occurrence of this

header could cause undefined behaviour in browsers and should be avoided.

Target: {{15 - - - - -}}

1. Strict Transport Security Misconfiguration

Severity: Medium

The HTTP Strict Transport Security policy defines a timeframe where a browser must

connect to the web server via HTTPS. Without a Strict Transport Security policy the web

application may be vulnerable against several attacks:

● If the web application mixes usage of HTTP and HTTPS, an attacker can manipulate

pages in the unsecured area of the application or change redirection targets in a

manner that the switch to the secured page is not performed or done in a manner,

that the attacker remains between client and server.

22

● If there is no HTTP server, an attacker in the same network could simulate a HTTP

server and motivate the user to click on a prepared URL by a social engineering

attack.

The protection is effective only for the given amount of time. Multiple occurrence of this

header could cause undefined behaviour in browsers and should be avoided.

2. Content sniffing not disabled

Severity: Low

There was no "X-Content-Type-Options" HTTP header with the value nosniff set in the

response. The lack of this header causes that certain browsers, try to determine the

content type and encoding of the response even when these properties are defined

correctly. This can make the web application vulnerable against Cross-Site Scripting (XSS)

attacks. E.g. the Internet Explorer and Safari treat responses with the content type

text/plain as HTML, if they contain HTML tags.

Set the following HTTP header at least in all responses which contain user input:

X-Content-Type-Options: nosniff

3. Cross-site scripting filter misconfiguration

Severity: Low

No X-XSS-Protection header was set in the response. This means that the browser uses

default behavior that detection of a cross-site scripting attack never prevents rendering.

The following header should be set:

X-XSS-Protection: 1; mode=block

Cross-site scripting (XSS) filters in browsers check if the URL contains possible harmful

XSS payloads and if they are reflected in the response page. If such a condition is

recognized, the injected code is changed in a way, that it is not executed anymore to

prevent a succesful XSS attack. The downside of these filters is, that the browser has no

possibility to distinguish between code fragments which were reflected by a vulnerable web

23

application in an XSS attack and these which are already present on the page. In the past,

these filters were used by attackers to deactivate JavaScript code on the attacked web

page. Sometimes the XSS filters itself are vulnerable in a way, that web applications which

were protected properly against XSS attacks became vulnerable under certain conditions.

It is considered as better practice to instruct the browser XSS filter to never render the

web page if an XSS attack is detected.

4. Cross-origin resource sharing: arbitrary origin trusted

24

Target: {{24 - - - - - - - - -}}

1. Strict Transport Security Misconfiguration

Severity: Medium

The HTTP Strict Transport Security policy defines a timeframe where a browser must

connect to the web server via HTTPS. Without a Strict Transport Security policy the web

application may be vulnerable against several attacks:

● If the web application mixes usage of HTTP and HTTPS, an attacker can manipulate

pages in the unsecured area of the application or change redirection targets in a

manner that the switch to the secured page is not performed or done in a manner,

that the attacker remains between client and server.

● If there is no HTTP server, an attacker in the same network could simulate a HTTP

server and motivate the user to click on a prepared URL by a social engineering

attack.

The protection is effective only for the given amount of time. Multiple occurrence of this

header could cause undefined behaviour in browsers and should be avoided.

25

2. Spoofable client address

If an application trusts an HTTP request header like X-Forwarded-For to accurately

specify the remote IP address of the connecting client, then malicious clients can spoof

their IP address. This behavior does not necessarily constitute a security vulnerability,

however some applications use client IP addresses to enforce access controls and rate

limits. For example, an application might expose administrative functionality only to clients

connecting from the local IP address of the server, or allow a certain number of failed login

attempts from each unique IP address. Consider reviewing relevant functionality to

determine whether this might be the case.

HTTP request headers such as X-Forwarded-For, True-Client-IP, and X-Real-IP are not a

robust foundation on which to build any security measures, such as access controls. Any

26

such measures should be replaced with more secure alternatives that are not vulnerable to

spoofing.

If the platform application server returns incorrect information about the client's IP address

due to the presence of any particular HTTP request header, then the server may need to be

reconfigured, or an alternative method of identifying clients should be used

Finding: Input returned in response (reflected)

Severity: low/info

Targets: {{1 - - - - - - - - -}} /users/<userID>

Description:

Reflection of input arises when data is copied from a request and echoed into the

application's immediate response.

Input being returned in application responses is not a vulnerability in its own right.

However, it is a prerequisite for many client-side vulnerabilities, including cross-site

scripting, open redirection, content spoofing, and response header injection. Additionally,

27

some server-side vulnerabilities such as SQL injection are often easier to identify and

exploit when input is returned in responses. In applications where input retrieval is rare

and the environment is resistant to automated testing (for example, due to a web

application firewall), it might be worth subjecting instances of it to focused manual testing.

Finding: Expired TLS certificate

Target: {{15 - - - - -}}

Severity: Low

TLS (or SSL) helps to protect the confidentiality and integrity of information in transit

between the browser and server, and to provide authentication of the server's identity. To

serve this purpose, the server must present an TLS certificate that is valid for the server's

hostname, is issued by a trusted authority and is valid for the current date. If any one of

these requirements is not met, TLS connections to the server will not provide the full

protection for which TLS is designed.

28

It should be noted that various attacks exist against TLS in general, and in the context of

HTTPS web connections in particular. It may be possible for a determined and

suitably-positioned attacker to compromise TLS connections without user detection even

when a valid TLS certificate is used.

29

Finding: Private IP address disclosed, e-mail disclosed

Target: {{15 - - - - -}}

Severity: Low

30

Summary

Services have a lot of minor vulnerabilities and also they have couple of really critical issues

such as SQL injections. Also main business logic concerned about isolation of clients’

information and processes is corrupted because of RBAC issues.

Firstly, developers must review the code that is responsible for receiving and filtering

requests to database from crypto-services, that can help to mitigate detected SQL

injections and prevent further potential SQL vulnerabilities.

Next, we recommend to review RBAC-responsible blocks of code, at least that are

responsible for issues described in report, but lot detected RBAC issues testifies that this

part of code is not checked enough and possibly may be vulnerable at other endpoints.

Then it’s very important to check functionality and interactions of refresh and access

tokens. Refresh token must not be used as access token advice versa.

Crypto-pay-cms: update strapi and node services. Change credentials on prod enironment.

And last, but not least - update security headers in web-server responses. It’s not a critical

issue, but it’s an effective layer of security, that will protect your services from potential

attack vectors.

31

